Proof-Carrying Code with Dependent Session Types

Bernardo Toninho
[with Luis Caires and Frank Pfenning]

Center for Informatics and Information Technology (CITI)
Computer Science Department
FCT-UNL & Carnegie Mellon University

Betty Meeting 2013

Bernardo Toninho (CITI & CMU) 1/10

Background

Challenges

Reasoning about distributed software systems in the presence of
complex requirements is necessary but hard:

@ Functionality
@ Integrity
@ Deadlock/Livelock Freedom

Bernardo Toninho (CITI & CMU) 2/10

Background
Challenges

Reasoning about distributed software systems in the presence of
complex requirements is necessary but hard:

@ Functionality
@ Integrity
@ Deadlock/Livelock Freedom

Key Issues

@ How can we express the properties of interest?

@ How can we enforce them using static (compile-time) and dynamic
(run-time) methods?

v

Bernardo Toninho (CITI & CMU) 2/10

Approach

Session Types
@ Types are behavioral specifications of communication protocols.

@ Statically checkable (simple) protocols.
@ Safety “for free”.

Bernardo Toninho (CITI & CMU) 3/10

Approach

Session Types
@ Types are behavioral specifications of communication protocols.

@ Statically checkable (simple) protocols.
@ Safety “for free”.

@ Propositions (types) talk about (complex) properties.
@ In intuitionistic logic, propositions (types) talk about proofs.

Bernardo Toninho (CITI & CMU) 3/10

@ A logical interpretation of dependent session types:

o Types can talk about communicated data.
e Types can talk about rich properties and proofs.
e Programs communicate data and proofs about the datal!

Bernardo Toninho (CITI & CMU) 4/10

@ A logical interpretation of dependent session types:

o Types can talk about communicated data.
e Types can talk about rich properties and proofs.
e Programs communicate data and proofs about the datal!

@ Two extensions, based on logic:

o Omit proofs at runtime — Proof Irrelevance
o Digital certificates — Affirmation

Bernardo Toninho (CITI & CMU) 4/10

@ A logical interpretation of dependent session types:

o Types can talk about communicated data.
e Types can talk about rich properties and proofs.
e Programs communicate data and proofs about the datal!

@ Two extensions, based on logic:

o Omit proofs at runtime — Proof Irrelevance
o Digital certificates — Affirmation

@ Applications:

o Statically certified distributed computing
e Runtime system for proof-carrying/certified distributed software.

Bernardo Toninho (CITI & CMU) 4/10

Types

Simple Session Types

ST =1 Stop

Bernardo Toninho (CITI & CMU) 5/10

Types

Simple Session Types

ST =1 Stop
| T®S Output

Bernardo Toninho (CITI & CMU) 5/10

Types
Simple Session Types

ST =1 Stop
| T®S Output
| T —S Input

Bernardo Toninho (CITI & CMU) 5/10

Types

Simple Session Types

ST =1 Stop
| T®S Output
| T —S Input
| IS Replication

Bernardo Toninho (CITI & CMU) 5/10

Types
Simple Session Types

ST =1 Stop
| T®S Output
| T —S Input
| IS Replication
| 7 Base Types
|

Bernardo Toninho (CITI & CMU) 5/10

Types
Simple Session Types

ST = 1 Stop
| T®S Output
| T —S Input
| IS Replication
| 7 Base Types
|

Typing Judgment

X1:81,...,X: Sk P:m:S

Process P, when composed with systems providing behavior S; at x;,
yields a deadlock-free system providing behavior S at m.

Bernardo Toninho (CITI & CMU) 5/10

Example - PDF Indexer

A persistent PDF indexing service:
index = I(file —o (file ® 1))

A persistent service that receives a file (a pdf) and outputs a file (an
indexed version of the pdf).

Bernardo Toninho (CITI & CMU) 6/10

Example - PDF Indexer

A persistent PDF indexing service:
index £ I(file —o (file ® 1))

A persistent service that receives a file (a pdf) and outputs a file (an
indexed version of the pdf).

@ Type doesn’t specify the functional behavior, just communication!
e “Persistent service that inputs a file and outputs a file”

@ “Just trust me on it” — Not reasonable in a distributed setting.

Bernardo Toninho (CITI & CMU) 6/10

Types Revisited

Basic types 7 are now a dependent type theory:
@ Types as arbitrary properties (predicates, relations)
@ Terms as proofs of the properties

Bernardo Toninho (CITI & CMU) 7/10

Types Revisited

Basic types 7 are now a dependent type theory:
@ Types as arbitrary properties (predicates, relations)
@ Terms as proofs of the properties

Dependent Session Types

T.S := Vx:r.A Input M:7 continue as A{M/x}
| 3Ix:7.A Output M:7 continue as A{M/x}

Bernardo Toninho (CITI & CMU) 7/10

Types Revisited

Basic types 7 are now a dependent type theory:
@ Types as arbitrary properties (predicates, relations)
@ Terms as proofs of the properties

Dependent Session Types

T.S := Vx:r.A Input M:7 continue as A{M/x}
| 3Ix:7.A Output M:7 continue as A{M/x}

T = [7] Erasable proof of 7

| Okt Principal K produces a certificate for a proof of ©

v

Certificates assume a public key infrastructure.

Bernardo Toninho (CITI & CMU) 7/10

Example - PDF Indexer Revisited

@ A persistent PDF indexer:

index £ I(file —o (file ® 1))

Bernardo Toninho (CITI & CMU) 8/10

Example - PDF Indexer Revisited

@ A persistent PDF indexer:
index £ I(file —o (file ® 1))
@ A certifying indexer:

A

indexy = I(Vf : file.pdf(f) — g : file.pdf(g) @ agree(f,g) ® 1)

Bernardo Toninho (CITI & CMU) 8/10

Example - PDF Indexer Revisited

@ A persistent PDF indexer:
index £ I(file —o (file ® 1))
@ A certifying indexer:
indexy £ I(Vf : file.pdf(f) — 3g : file.pdf(g) ® agree(f,g) ® 1)

@ A trusted indexer — No proofs at runtime:

indexp £ I(Vf : file.[pdf(f)] — 3g : file.[pdf(g)] ® [agree(f,g)] ® 1)

Bernardo Toninho (CITI & CMU) 8/10

Example - PDF Indexer Revisited

@ A persistent PDF indexer:
index £ I(file —o (file ® 1))
@ A certifying indexer:
index;y £ I(Vf : file.pdf(f) — 3g : file.pdf(g) ® agree(f, g) ® 1)
@ A trusted indexer — No proofs at runtime:
indexp £ I(Vf : file.[pdf(f)] — 3g : file.[pdf(g)] ® [agree(f,g)] ® 1)

@ A liable indexer — Signed certificate transmitted:

indexo £ 1(Vf : file.[pdf(f)] — 3g : file.[pdf(g)] ® O/[agree(f, g)|®1)

Bernardo Toninho (CITI & CMU) 8/10

Technical Resulis

We obtain the following soundness results for our system:
@ Type Preservation - “Internal actions don't alter types”.
@ Progress - “Systems can always take actions”.

Bernardo Toninho (CITI & CMU) 9/10

Technical Resulis

We obtain the following soundness results for our system:
@ Type Preservation - “Internal actions don't alter types”.
@ Progress - “Systems can always take actions”.

In practice, this means:
@ Protocol Fidelity - “Protocols are guaranteed to be played out”.
@ Deadlock and Livelock Absence - “Systems don’t get stuck”.
@ Logical assertions in protocols always hold.

Bernardo Toninho (CITI & CMU) 9/10

Concluding Remarks

Contributions

@ A logically motivated system of proof-carrying communication.
@ Exploit the logical foundation:

e Communicating proofs (explicit or implicit through proof irrelevance)
o Digital signatures (implicit or explicit via affirmation)

@ Clean integration of reasoning and computation.

Bernardo Toninho (CITI & CMU) 10/10

Concluding Remarks

Contributions

@ A logically motivated system of proof-carrying communication.

@ Exploit the logical foundation:
e Communicating proofs (explicit or implicit through proof irrelevance)
o Digital signatures (implicit or explicit via affirmation)

@ Clean integration of reasoning and computation.

v

Future Work
@ Practical language design considerations.
@ Reasoning about processes, not just communicated data.

Bernardo Toninho (CITI & CMU) 10/10

