
Proof-Carrying Code with Dependent Session Types

Bernardo Toninho
[with Luı́s Caires and Frank Pfenning]

Center for Informatics and Information Technology (CITI)
Computer Science Department

FCT-UNL & Carnegie Mellon University

Betty Meeting 2013

Bernardo Toninho (CITI & CMU) 1 / 10

Background

Challenges
Reasoning about distributed software systems in the presence of
complex requirements is necessary but hard:

Functionality
Integrity
Deadlock/Livelock Freedom

Key Issues
How can we express the properties of interest?
How can we enforce them using static (compile-time) and dynamic
(run-time) methods?

Bernardo Toninho (CITI & CMU) 2 / 10

Background

Challenges
Reasoning about distributed software systems in the presence of
complex requirements is necessary but hard:

Functionality
Integrity
Deadlock/Livelock Freedom

Key Issues
How can we express the properties of interest?
How can we enforce them using static (compile-time) and dynamic
(run-time) methods?

Bernardo Toninho (CITI & CMU) 2 / 10

Approach

Session Types
Types are behavioral specifications of communication protocols.
Statically checkable (simple) protocols.
Safety “for free”.

Logic
Propositions (types) talk about (complex) properties.
In intuitionistic logic, propositions (types) talk about proofs.

Bernardo Toninho (CITI & CMU) 3 / 10

Approach

Session Types
Types are behavioral specifications of communication protocols.
Statically checkable (simple) protocols.
Safety “for free”.

Logic
Propositions (types) talk about (complex) properties.
In intuitionistic logic, propositions (types) talk about proofs.

Bernardo Toninho (CITI & CMU) 3 / 10

Our Work

A logical interpretation of dependent session types:
Types can talk about communicated data.
Types can talk about rich properties and proofs.
Programs communicate data and proofs about the data!

Two extensions, based on logic:
Omit proofs at runtime – Proof Irrelevance
Digital certificates – Affirmation

Applications:
Statically certified distributed computing
Runtime system for proof-carrying/certified distributed software.

Bernardo Toninho (CITI & CMU) 4 / 10

Our Work

A logical interpretation of dependent session types:
Types can talk about communicated data.
Types can talk about rich properties and proofs.
Programs communicate data and proofs about the data!

Two extensions, based on logic:
Omit proofs at runtime – Proof Irrelevance
Digital certificates – Affirmation

Applications:
Statically certified distributed computing
Runtime system for proof-carrying/certified distributed software.

Bernardo Toninho (CITI & CMU) 4 / 10

Our Work

A logical interpretation of dependent session types:
Types can talk about communicated data.
Types can talk about rich properties and proofs.
Programs communicate data and proofs about the data!

Two extensions, based on logic:
Omit proofs at runtime – Proof Irrelevance
Digital certificates – Affirmation

Applications:
Statically certified distributed computing
Runtime system for proof-carrying/certified distributed software.

Bernardo Toninho (CITI & CMU) 4 / 10

Types

Simple Session Types

S,T ::= 1 Stop

| T ⊗ S Output

| T (S Input

| !S Replication

| τ Base Types

| . . .

Typing Judgment

x1 : S1, . . . , xk : Sk ` P :: m:S

Process P, when composed with systems providing behavior Sj at xj ,
yields a deadlock-free system providing behavior S at m.

Bernardo Toninho (CITI & CMU) 5 / 10

Types

Simple Session Types

S,T ::= 1 Stop

| T ⊗ S Output

| T (S Input

| !S Replication

| τ Base Types

| . . .

Typing Judgment

x1 : S1, . . . , xk : Sk ` P :: m:S

Process P, when composed with systems providing behavior Sj at xj ,
yields a deadlock-free system providing behavior S at m.

Bernardo Toninho (CITI & CMU) 5 / 10

Types

Simple Session Types

S,T ::= 1 Stop

| T ⊗ S Output

| T (S Input

| !S Replication

| τ Base Types

| . . .

Typing Judgment

x1 : S1, . . . , xk : Sk ` P :: m:S

Process P, when composed with systems providing behavior Sj at xj ,
yields a deadlock-free system providing behavior S at m.

Bernardo Toninho (CITI & CMU) 5 / 10

Types

Simple Session Types

S,T ::= 1 Stop

| T ⊗ S Output

| T (S Input

| !S Replication

| τ Base Types

| . . .

Typing Judgment

x1 : S1, . . . , xk : Sk ` P :: m:S

Process P, when composed with systems providing behavior Sj at xj ,
yields a deadlock-free system providing behavior S at m.

Bernardo Toninho (CITI & CMU) 5 / 10

Types

Simple Session Types

S,T ::= 1 Stop

| T ⊗ S Output

| T (S Input

| !S Replication

| τ Base Types

| . . .

Typing Judgment

x1 : S1, . . . , xk : Sk ` P :: m:S

Process P, when composed with systems providing behavior Sj at xj ,
yields a deadlock-free system providing behavior S at m.

Bernardo Toninho (CITI & CMU) 5 / 10

Types

Simple Session Types

S,T ::= 1 Stop

| T ⊗ S Output

| T (S Input

| !S Replication

| τ Base Types

| . . .

Typing Judgment

x1 : S1, . . . , xk : Sk ` P :: m:S

Process P, when composed with systems providing behavior Sj at xj ,
yields a deadlock-free system providing behavior S at m.

Bernardo Toninho (CITI & CMU) 5 / 10

Example - PDF Indexer

A persistent PDF indexing service:

index , !(file((file⊗ 1))

A persistent service that receives a file (a pdf) and outputs a file (an
indexed version of the pdf).

Remark
Type doesn’t specify the functional behavior, just communication!

“Persistent service that inputs a file and outputs a file”

“Just trust me on it” – Not reasonable in a distributed setting.

Bernardo Toninho (CITI & CMU) 6 / 10

Example - PDF Indexer

A persistent PDF indexing service:

index , !(file((file⊗ 1))

A persistent service that receives a file (a pdf) and outputs a file (an
indexed version of the pdf).

Remark
Type doesn’t specify the functional behavior, just communication!

“Persistent service that inputs a file and outputs a file”

“Just trust me on it” – Not reasonable in a distributed setting.

Bernardo Toninho (CITI & CMU) 6 / 10

Types Revisited

Basic types τ are now a dependent type theory:
Types as arbitrary properties (predicates, relations)
Terms as proofs of the properties

Dependent Session Types

T ,S ::= ∀x :τ.A Input M:τ continue as A{M/x}
| ∃x :τ.A Output M:τ continue as A{M/x}

τ ::= [τ] Erasable proof of τ

| ♦K τ Principal K produces a certificate for a proof of τ

Certificates assume a public key infrastructure.

Bernardo Toninho (CITI & CMU) 7 / 10

Types Revisited

Basic types τ are now a dependent type theory:
Types as arbitrary properties (predicates, relations)
Terms as proofs of the properties

Dependent Session Types

T ,S ::= ∀x :τ.A Input M:τ continue as A{M/x}
| ∃x :τ.A Output M:τ continue as A{M/x}

τ ::= [τ] Erasable proof of τ

| ♦K τ Principal K produces a certificate for a proof of τ

Certificates assume a public key infrastructure.

Bernardo Toninho (CITI & CMU) 7 / 10

Types Revisited

Basic types τ are now a dependent type theory:
Types as arbitrary properties (predicates, relations)
Terms as proofs of the properties

Dependent Session Types

T ,S ::= ∀x :τ.A Input M:τ continue as A{M/x}
| ∃x :τ.A Output M:τ continue as A{M/x}

τ ::= [τ] Erasable proof of τ

| ♦K τ Principal K produces a certificate for a proof of τ

Certificates assume a public key infrastructure.

Bernardo Toninho (CITI & CMU) 7 / 10

Example - PDF Indexer Revisited

A persistent PDF indexer:

index , !(file((file⊗ 1))

A certifying indexer:

index1 , !(∀f : file.pdf(f)(∃g : file.pdf(g)⊗ agree(f ,g)⊗ 1)

A trusted indexer – No proofs at runtime:

index2 , !(∀f : file.[pdf(f)](∃g : file.[pdf(g)]⊗ [agree(f ,g)]⊗ 1)

A liable indexer – Signed certificate transmitted:

index2 , !(∀f : file.[pdf(f)](∃g : file.[pdf(g)]⊗♦I [agree(f ,g)]⊗1)

Bernardo Toninho (CITI & CMU) 8 / 10

Example - PDF Indexer Revisited

A persistent PDF indexer:

index , !(file((file⊗ 1))

A certifying indexer:

index1 , !(∀f : file.pdf(f)(∃g : file.pdf(g)⊗ agree(f ,g)⊗ 1)

A trusted indexer – No proofs at runtime:

index2 , !(∀f : file.[pdf(f)](∃g : file.[pdf(g)]⊗ [agree(f ,g)]⊗ 1)

A liable indexer – Signed certificate transmitted:

index2 , !(∀f : file.[pdf(f)](∃g : file.[pdf(g)]⊗♦I [agree(f ,g)]⊗1)

Bernardo Toninho (CITI & CMU) 8 / 10

Example - PDF Indexer Revisited

A persistent PDF indexer:

index , !(file((file⊗ 1))

A certifying indexer:

index1 , !(∀f : file.pdf(f)(∃g : file.pdf(g)⊗ agree(f ,g)⊗ 1)

A trusted indexer – No proofs at runtime:

index2 , !(∀f : file.[pdf(f)](∃g : file.[pdf(g)]⊗ [agree(f ,g)]⊗ 1)

A liable indexer – Signed certificate transmitted:

index2 , !(∀f : file.[pdf(f)](∃g : file.[pdf(g)]⊗♦I [agree(f ,g)]⊗1)

Bernardo Toninho (CITI & CMU) 8 / 10

Example - PDF Indexer Revisited

A persistent PDF indexer:

index , !(file((file⊗ 1))

A certifying indexer:

index1 , !(∀f : file.pdf(f)(∃g : file.pdf(g)⊗ agree(f ,g)⊗ 1)

A trusted indexer – No proofs at runtime:

index2 , !(∀f : file.[pdf(f)](∃g : file.[pdf(g)]⊗ [agree(f ,g)]⊗ 1)

A liable indexer – Signed certificate transmitted:

index2 , !(∀f : file.[pdf(f)](∃g : file.[pdf(g)]⊗♦I [agree(f ,g)]⊗1)

Bernardo Toninho (CITI & CMU) 8 / 10

Technical Results

We obtain the following soundness results for our system:
Type Preservation - “Internal actions don’t alter types”.
Progress - “Systems can always take actions”.

In practice, this means:
Protocol Fidelity - “Protocols are guaranteed to be played out”.
Deadlock and Livelock Absence - “Systems don’t get stuck”.
Logical assertions in protocols always hold.

Bernardo Toninho (CITI & CMU) 9 / 10

Technical Results

We obtain the following soundness results for our system:
Type Preservation - “Internal actions don’t alter types”.
Progress - “Systems can always take actions”.

In practice, this means:
Protocol Fidelity - “Protocols are guaranteed to be played out”.
Deadlock and Livelock Absence - “Systems don’t get stuck”.
Logical assertions in protocols always hold.

Bernardo Toninho (CITI & CMU) 9 / 10

Concluding Remarks

Contributions
A logically motivated system of proof-carrying communication.
Exploit the logical foundation:

Communicating proofs (explicit or implicit through proof irrelevance)
Digital signatures (implicit or explicit via affirmation)

Clean integration of reasoning and computation.

Future Work
Practical language design considerations.
Reasoning about processes, not just communicated data.

Bernardo Toninho (CITI & CMU) 10 / 10

Concluding Remarks

Contributions
A logically motivated system of proof-carrying communication.
Exploit the logical foundation:

Communicating proofs (explicit or implicit through proof irrelevance)
Digital signatures (implicit or explicit via affirmation)

Clean integration of reasoning and computation.

Future Work
Practical language design considerations.
Reasoning about processes, not just communicated data.

Bernardo Toninho (CITI & CMU) 10 / 10

