
Multi-party sessions as a security protocol
abstraction

Karthikeyan Bhargavan Ricardo Corin Pierre-Malo Deniélou

Cédric Fournet James J. Leifer

INRIA - Microsoft Research Joint Centre

BETTY Meeting, Rome, 24 March 2013

1 / 10

Secure distributed programming

Only realistic security assumption:

The network and any coalition of peers are potentially malicious.

Designing a (correct) security protocol by hand is hard:

involves low-level, error-prone coding below communication abstractions,

depends on global message choreography,

needs to protect against coalitions of compromised peers.

Therefore, our solution:

to automatically generate tailored cryptographic protocols protecting against
the network and compromised peers;

to hide implementation details and provide mechanised proofs of correctness.

2 / 10

Sessions (contracts, conversations, workflows, ...)

c

wc

c

()Enough()

(q)Extra(q)

(x)Reply(x)(c ,w , q)Request(c ,w , q)

Text representation:

protocol WSn(role c, role w) {

{c,w,q} Request {c,w,q} from c to w ;

rec loop {

choice at w {

{x} Reply {x} from w to c ;

{q} Extra {q} from c to w ;

continue loop; }

or { Enough from w to c ; } } }

3 / 10

Sessions (contracts, conversations, workflows, ...)

c

wc

c

()Enough()

(q)Extra(q)

(x)Reply(x)(c ,w , q)Request(c ,w , q)

Execution
Labels:

Request-Reply-Extra-Reply-Extra

Store:
c :

Alice

w :

Bob

q:
x :

4 / 10

Sessions (contracts, conversations, workflows, ...)

c

wc

c

()Enough()

(q)Extra(q)

(x)Reply(x)(c ,w , q)Request(c ,w , q)

Execution
Labels: Request

Request-Reply-Extra-Reply-Extra

Store:
c : Alice
w : Bob
q: “Gone with the wind”
x :

4 / 10

Sessions (contracts, conversations, workflows, ...)

c

wc

c

()Enough()

(q)Extra(q)

(x)Reply(x)(c ,w , q)Request(c ,w , q)

Execution
Labels: Request-Reply

-Reply-Extra-Reply-Extra

Store:
c : Alice
w : Bob
q: “Gone with the wind”
x : “8 euros”

4 / 10

Sessions (contracts, conversations, workflows, ...)

c

wc

c

()Enough()

(q)Extra(q)

(x)Reply(x)(c ,w , q)Request(c ,w , q)

Execution
Labels: Request-Reply-Extra

-Extra-Reply-Extra

Store:
c : Alice
w : Bob
q: “In stock?”
x : “8 euros”

4 / 10

Sessions (contracts, conversations, workflows, ...)

c

wc

c

()Enough()

(q)Extra(q)

(x)Reply(x)(c ,w , q)Request(c ,w , q)

Execution
Labels: Request-Reply-Extra-Reply

-Reply-Extra

Store:
c : Alice
w : Bob
q: “In stock?”
x : “yes”

4 / 10

Sessions (contracts, conversations, workflows, ...)

c

wc

c

()Enough()

(q)Extra(q)

(x)Reply(x)(c ,w , q)Request(c ,w , q)

Execution
Labels: Request-Reply-Extra-Reply-Extra

-Extra

Store:
c : Alice
w : Bob
q: “Delivery date?”
x : “yes”

4 / 10

Sessions (contracts, conversations, workflows, ...)

c

wc

c

()Enough()

(q)Extra(q)

(x)Reply(x)(c ,w , q)Request(c ,w , q)

Execution
Labels: Request-Reply-Extra-Reply-Extra-Enough
Store:

c : Alice
w : Bob
q: “Delivery date?”
x : “yes”

4 / 10

Threats against session integrity

Powerful Attacker model

can spy on transmitted messages

can join a session as any role

can initiate sessions

can access the libraries (networking,
crypto)

cannot forge signatures

c oAbort

w

Reject

c

Offer

w oConfirm
Change

Accept

o Contractc Request

Attacks against an insecure implementation

(Integrity) Rewrite Offer by Reject

(Replay) Intercept Reject and replay old Offer, triggering a new iteration

(Sender authentication) Intercept Abort and send Confirm to o

... and many more against the store

5 / 10

Protocol outline

Principles of our
protocol generation

1 Each edge is implemented by a unique concrete message.

2 We want static message handling for efficiency.

Against replay attacks

between session executions: session nonces

between loop iterations: time stamps

at session initialisations: anti-replay caches

w cReplyp Forwardc Request

Against session flow attacks

Signatures of the entire message history (optimisations possible ...)

6 / 10

Architecture

ML
Application

code
Concrete
Model

F+S

Networking &
Cryptography

Session
implementation

ML compiler

Symbolic
Model

Symbolic

formally
verified code

ML
Application

code

Session
declarations

An extension of ML
with sessions

S2ml,
A secure
session
compiler

Concrete

Executable

7 / 10

Security result

Theorem (Session Integrity)

For any run of a S1....Sn-system, there is a partition of the compliant
events such that each equivalence class coincides with a compliant
subtrace of a session Si from from S1...Sn.

All events: ������������

Compliant events: ������������

...corresponding to S1 events: ������������

...and S2 events: ������������

8 / 10

Conclusion

Security protocols are hard to write by hand. They are
long, complicated, difficult to verify, and fragile in the face of
specification change.

Automatic generation with mechanised verification is the future!

Future directions:

Expand the session description language

Finer-grain attacker-model

Expand the modularity of the formal proof

Towards matching existing protocols

Papers

[CSF’07] [TGC’07] [CSF’09]

Theoretical extension with concurrency [CONCUR’09]

F∗ extends F7 [POPL’10] [POPL’12]

9 / 10

Shameless advertising

Royal Holloway, University of London

The CS department (HoD José Fiadeiro) is hiring a new lecturer.

Join a research-oriented university in West-London!

Prefered themes:

Machine Learning
Bioinformatics
Theory (Algorithmics, Type theory, Automata)
Distributed and Global Computing

Apply (or tell your colleagues about it) before mid-April!
10 / 10

