Multi-party sessions as a security protocol
abstraction

Karthikeyan Bhargavan Ricardo Corin Pierre-Malo Deniélou

Cédric Fournet James J. Leifer

INRIA - Microsoft Research Joint Centre

BETTY Meeting, Rome, 24 March 2013

1/10

Secure distributed programming

The network and any coalition of peers are potentially malicious. I

Designing a (correct) security protocol by hand is hard:

@ involves low-level, error-prone coding below communication abstractions,

@ depends on global message choreography,

@ needs to protect against coalitions of compromised peers.

Therefore, our solution:

@ to automatically generate tailored cryptographic protocols protecting against
the network and compromised peers;

@ to hide implementation details and provide mechanised proofs of correctness.
v

2/ 10

Sessions (contracts, conversations, workflows, ...)

(¢, w, g)Request(c, w, q)

O

()Enough()

Text representation:

protocol WSn(role ¢, role w) {
{c,w,q} Request {c,w,q} from
rec loop {
choice at w {
{x} Reply {x} from w to c
{q} Extra {q} from c to w
continue loop;
or { Enough from w to ¢ ; }

3/ 10

(x)Reply(x)

Sessions (contracts, conversations, workflows, ...)

()Enough()

@ (c,w, q)Request(c, w, q) (x)Reply(x)

(q)Extra(q)

Labels:
Store:

X9 0

Sessions (contracts, conversations, workflows, ...)

()Enough()

@ (c, w, g)Request(c, w, q) (x)Reply(x)

(q)Extra(q)

Labels: Request
Store:
c: Alice
w: Bob
g: "Gone with the wind"”
X:

Sessions (contracts, conversations, workflows, ...)

()Enough()

@ (¢, w, g)Request(c, w, q) (x)Reply(x)

Execution
Labels: Request-Reply
Store:
c: Alice
w: Bob
g: "Gone with the wind"”
x: "8 euros”

4 /10

Sessions (contracts, conversations, workflows, ...)

()Enough()

@ (c,w, q)Request(c, w, q) (x)Reply(x)

Execution

Labels: Request-Reply-Extra
Store:

c: Alice

w: Bob

g: "In stock?”

x: "8 euros”

4 /10

Sessions (contracts, conversations, workflows, ...)

()Enough()

@ (¢, w, g)Request(c, w, q)

(x)Reply(x)

Execution

Labels: Request-Reply-Extra-Reply
Store:

Alice

Bob

“In stock?”

yes

X9 0

4 /10

Sessions (contracts, conversations, workflows, ...)

()Enough()

@ (c,w, q)Request(c, w, q) (x)Reply(x)

Execution
Labels: Request-Reply-Extra-Reply-Extra
Store:

c: Alice

w: Bob

q: “Delivery date?”

x: ‘“yes"

4 /10

Sessions (contracts, conversations, workflows, ...)

()Enough()

@ (c,w, q)Request(c, w, q) (x)Reply(x)

Execution
Labels: Request-Reply-Extra-Reply-Extra-Enough
Store:

c: Alice

w: Bob

q: “Delivery date?”

x: ‘“yes"

4 /10

Threats against session integrity

Powerful Attacker model

@ can spy on transmitted messages @ can access the libraries (networking,
@ can join a session as any role crypto)
O e e sssens @ cannot forge signatures

Confirm

@ (Integrity) Rewrite Offer by Reject

@ (Replay) Intercept Reject and replay old Offer, triggering a new iteration
@ (Sender authentication) Intercept Abort and send Confirm to o

@ ... and many more against the store

5/ 10

Protocol outline

Principles of our

© Each edge is implemented by a unique concrete message
protocol generation

@ We want static message handling for efficiency.

Against replay attacks
@ between session executions: session nonces
@ between loop iterations: time stamps

@ at session initialisations: anti-replay caches

. Request . Forward . Reply .

Against session flow attacks

@ Signatures of the entire message history (optimisations possible ...) J

6/ 10

Architecture

S2ml, . :
A secure = Networking & .
session = Cryptography :
compiler :lll sssmmma”

formally
verified code

Session Session
declarations implementation

Concrete
Model

ML compller

An extension of ML
with sessions

Executable

7/ 10

Security result

Theorem (Session Integrity)

For any run of a S;....S,-system, there is a partition of the compliant
events such that each equivalence class coincides with a compliant
subtrace of a session S; from from 5;1...5,,.

All events: > a4 d g a4 d g
Compliant events: > e N g
...corresponding to S; events: > > b >

...and S, events:

Conclusion

@ Security protocols are hard to write by hand. They are
long, complicated, difficult to verify, and fragile in the face of
specification change.

@ Automatic generation with mechanised verification is the future!
Future directions:

@ Expand the session description language

@ Finer-grain attacker-model

@ Expand the modularity of the formal proof

@ Towards matching existing protocols

Papers
o [CSF'07] [TGC'07] [CSF'09]
@ Theoretical extension with concurrency [CONCUR'09]
o F* extends F7 [POPL'10] [POPL'12]

Shameless advertising

Royal Holloway, University of London
The CS department (HoD José Fiadeiro) is hiring a new lecturer. J

Join a research-oriented university in West-London!

Prefered themes:
@ Machine Learning
@ Bioinformatics
@ Theory (Algorithmics, Type theory, Automata)
@ Distributed and Global Computing
Apply (or tell your colleagues about it) before mid-April!

