
Session Types in
Functional Languages

Vasco T. Vasconcelos
Universidade de Lisboa

Bernardo Toninho
Universidade Nova de Lisboa

Betty meeting
March 24, 2013

Session types in
programming languages
• Session developed around the pi calculus

• Later transferred to different realms:

• Object-oriented programming

• Functional programming

• Operating systems

• Software services

• Object broker systems

Session types in
programming languages

• Used as descriptions for communication
media in general

Session types on
functional programing

languages
• We distinguish three approaches:

1. Session types in Haskell

2. Functional language + channel primitives

3. Functional language + process language

• and briefly address the last two

PADL 2004

Haskell 2008

Call-by-value functional
multi-threaded
programming

• Lambda: basic values, variables, abstraction,
application and pairs

• Communication channels: creation, sending/
receiving/selecting/branching on a channel

• Forking new threads

TCS 2006

I&C 2010

ICFP 2012

Example: The petition
server

• The type governing the interaction with the
petition server, as seen from the side of the
client

• First, “interactively” set up the title and the
closing date for the reception of the
signatures

Petition = ⊕{setTitle: !string.Petition,
 setDate: !date.Petition,

submit: ...}

Submitting a proposal

• Once happy, the petiton writer commits
the title+date.

• If the petition proposal is accepted by the
server, then the promotion phase begins

Petition = ⊕{...,
submit: &{accepted: Promotion,
 denied: ?string.end}}

The promotion phase

• During the promotion phase all one can do
is to sign the petition by sending a signature

Promotion = !string .Promotion

The linear and the
unrestricted phases

• The set up part is linear, we want no
interferences

• The promotion is unrestricted, we seek as
many signatories as possible

Petition = lin⊕{setTitle: lin!string.Petition,
setDate: lin!date.Petition,
submit: lin&{accepted: Promotion,

 denied: lin?string.end}}

Promotion = un!string.Promotion

The well-known type of
the petition channel

• The channel as seen from the client’s side

• Abbreviated to

∗?Petition

PetitionServer = un?Petition. PetitionServer

Creating and
distributing the petition

channel

1 saveTheWolf :: ⇤?Petition ! unit

2 saveTheWolf ps =

3 let p = ps? in

4 pC setDate; p!(31,12,2010);

5 pC setTitle; p!"Save the Wolf";

6 pC setDate; p!(31,12,2100);

7 pC submit ;

8 pB {accepted:

9 fork (signer1 p);

10 fork (signer2 p);

11 p!"me"

12 denied:

13 p?;

14 close p

15 }

16 signer1:: ⇤! string ! unit

17 signer1 p =

18 p!"signer1"

19 signer2:: ⇤! string ! unit

20 signer2 p =

21 fork (signer3 p);

22 p!"signer2"

23 signer3:: ⇤! string ! unit

24 signer3 p = ()

1 petitionServer :: ⇤! Petition ! unit

2 petitionServer ps =

3 split new Petition as p1, p2 in

4 ps!p1;

5 fork (setup p2 (1,1,1970) "Save me");

6 petitionServer ps

7 setup :: dual(Petition) ! date!
8 string ! unit

9 setut p d t =

10 pB {setDate: setup p (p?) t,

11 setTitle: setup p d (p?),

12 submit : pC accepted;

13 promotion p []

14 }

15 promotion :: ⇤?string !
16 stringList ! unit

17 promotion p l =

18 promotion p ((p?):: l)

1 main :: unit ! unit

2 main _ =

3 split new ⇤!Petition as ps1, ps2 in

4 fork (petitionServer ps1);

5 fork (saveTheWolf ps2)

Figure 6: Petition example in a functional language

Typing functional terms. We need one more type for functions; more precisely
one pretype p! p, which we add to those in Figure 1. As discussed in Section 2,
duality is not defined on this type. Figure 7 presents the typing rules for the
language. Once again, apologising for the inconvenience, rather than presenting
the syntax we ask the reader to read it from the terms in the conclusion of the
rules. Typing judgements are of the form �1 ` M : T ;�2 conveying the idea that
term M has type T under context �1. The “continuation” context �2 describes the
residual types of the variables used in M for channel operations (input, output,
receive, select). If T is a type of the form lin?un unit.T 0, we have:

x : T ` x? : un unit; x : T 0

x : T 0 () : un unit; x : T

The main challenge in the design of a type system for a functional language
with session types is typing input and output operations without explicitly men-
tioning the continuation. In other words, we want to type terms x? and x! alone. In

12

Code for the server
1 saveTheWolf :: ⇤?Petition ! unit

2 saveTheWolf ps =

3 let p = ps? in

4 pC setDate; p!(31,12,2010);

5 pC setTitle; p!"Save the Wolf";

6 pC setDate; p!(31,12,2100);

7 pC submit ;

8 pB {accepted:

9 fork (signer1 p);

10 fork (signer2 p);

11 p!"me"

12 denied:

13 p?;

14 close p

15 }

16 signer1:: ⇤! string ! unit

17 signer1 p =

18 p!"signer1"

19 signer2:: ⇤! string ! unit

20 signer2 p =

21 fork (signer3 p);

22 p!"signer2"

23 signer3:: ⇤! string ! unit

24 signer3 p = ()

1 petitionServer :: ⇤! Petition ! unit

2 petitionServer ps =

3 split new Petition as p1, p2 in

4 ps!p1;

5 fork (setup p2 (1,1,1970) "Save me");

6 petitionServer ps

7 setup :: dual(Petition) ! date!
8 string ! unit

9 setut p d t =

10 pB {setDate: setup p (p?) t,

11 setTitle: setup p d (p?),

12 submit : pC accepted;

13 promotion p []

14 }

15 promotion :: ⇤?string !
16 stringList ! unit

17 promotion p l =

18 promotion p ((p?):: l)

1 main :: unit ! unit

2 main _ =

3 split new ⇤!Petition as ps1, ps2 in

4 fork (petitionServer ps1);

5 fork (saveTheWolf ps2)

Figure 6: Petition example in a functional language

Typing functional terms. We need one more type for functions; more precisely
one pretype p! p, which we add to those in Figure 1. As discussed in Section 2,
duality is not defined on this type. Figure 7 presents the typing rules for the
language. Once again, apologising for the inconvenience, rather than presenting
the syntax we ask the reader to read it from the terms in the conclusion of the
rules. Typing judgements are of the form �1 ` M : T ;�2 conveying the idea that
term M has type T under context �1. The “continuation” context �2 describes the
residual types of the variables used in M for channel operations (input, output,
receive, select). If T is a type of the form lin?un unit.T 0, we have:

x : T ` x? : un unit; x : T 0

x : T 0 () : un unit; x : T

The main challenge in the design of a type system for a functional language
with session types is typing input and output operations without explicitly men-
tioning the continuation. In other words, we want to type terms x? and x! alone. In

12

Functions and
Processes

• A monadic integration of functions and (session-typed)
processes:

{c:S <- d:T} :: Functional type for a proc. c:S, using d:T
{ c <- P <- d } :: Functional term for a proc c:S, using d:T

• A linear extension to a general functional PL
• Processes can communicate functional terms so...
• Higher-order, mobile (open) processes!

Streams as Processes
• Output an infinite sequence of integers, starting at n.
• A recursive session type:

stype intStream = !int.intStream

• Write a recursive session using a recursive function:

 nats : int -> {c:intStream}
 c <- nats n =
 { _ <- output c n
 c <- nats (n+1) }

Streams as Processes
• Output an infinite sequence of integers, starting at n.
• A recursive session type:

stype intStream = !int.intStream

• Write a recursive session using a recursive function:

filter : (int -> bool) -> { d:intStream <- c:intStream }
d <- filter q <- c =
{ x <- input c
 case (q x) of
 true => _ <- output d x
 d <- filter q <- c
 | false => d <- filter q <- c}

Higher-Order
Processes

• Monadic values can be communicated by processes.
• An App Store Session:
 stype AppStore = Choice{
 weather:
 !{c:Weather <- d:API, e:GPS}.end
 travel:
 !{c:Travel <- d:API}.end
 game:
 !{c:Game <- d:API}.end}

Higher-Order
Processes

• The App Store code:
 c <- Store W Tr G =
 { case c of
 weather => _ <- output c W
 close c
 travel => _ <- output c Tr
 close c
 game => _ <- output c G
 close c}

Higher-Order
Processes

• The App Store Client, running the Weather App:
 c <- WeatherClient() <- a:AppStore, d:API =
 { _ <- a.weather
 w <- input a
 g <- ActivateGPS()
 c <- w <- d, g }

