Session Types in
Functional Languages

Vasco T. Vasconcelos Bernardo Toninho
Universidade de Lisboa Universidade Nova de Lisboa

Betty meeting
March 24,2013

Session types in
programming languages

® Session developed around the pi calculus
® |ater transferred to different realms:
® Object-oriented programming
Functional programming
Operating systems

Software services

Object broker systems

Session types in
programming languages

® Used as descriptions for
in general

Session types on
functional programing
languages

® Ve distinguish three approaches:

|. Session types in Haskell

2. Functiona

3. Functiona

anguage + channel primitives

anguage + process language

* and briefly address the last two

An Implementation of Session Types

Matthias Neubauer and Peter Thiemann*

Universitat Freiburg
Georges-Kohler-Allee 079
D-79110 Freiburg, Germany

Abstract. A session type is an abstraction of a set of sequences of het-
erogeneous values sent and received over a communication channel. Ses-
sion types can be used for specifying stream-based Internet protocols.
Typically, session types are attached to communication-based program
calculi, which renders them theoretical tools which are not readily us-
able in practice. To transfer session types into practice, we propose an
embedding of a core calculus with session types into the functional pro-
gramming language Haskell. The embedding preserves typing. A case
study (a client for SMTP, the Simple Mail Transfer Protocol) demon-
strates the feasibility of our approach.

PADL 2004

Haskell Session Types with (Almost) No Class

Riccardo Pucella Jesse A. Tov

Northeastern University
{riccardo,tov}@ccs.neu.edu

Haskell 2008

Session Types in Haskell

Updating Message Passing for the 21st Century

Matthew Sackman Susan Eisenbach

Imperial College, London
{ms, sue}@doc.ic.ac.uk

A full implementation of Session Types in Haskell

KeigoImai Shoji Yuen Kiyoshi Agusa
Graduate School of Information Science, Nagoya University
imai@nagoya-u.jp, yuen@is.nagoya-u.ac.jp, agusa@is.nagoya-u.ac.jp

Call-by-value functional
multi-threaded

programming

® | ambda: basic values, variables, abstraction,
application and pairs

® Communication channels: creation, sending/
receiving/selecting/branching on a channel

® Forking new threads

Typechecking a Multithreaded Functional
Language with Session Types™

Vasco T. Vasconcelos

Departamento de Informdtica, Faculdade de Ciéncias, Universidade de Lisboa,
1749-016 Lisboa, Portugal

Simon J. Gay

Department of Computing Science, University of Glasgow, Glasgow G12 8QQ, UK

Antdénio Ravara

CLC and Departamento de Matemdtica, Instituto Superior Técnico,
1049-001 Lisboa, Portugal

TCS 2006

JFP 20 (1): 19-50, 2010. (© Cambridge University Press 2009
d0i:10.1017/S0956796809990268 First published online 8 December 2009

Linear type theory for asynchronous
session types

SIMON J. GAY

Department of Computing Science, University of Glasgow, Glasgow G12 800, UK
(e-mail: simon@dcs.gla.ac.uk)

VASCO T. VASCONCELOS

Departamento de Informatica, Faculdade de Ciéncias, Universidade de Lisboa, 1749-016 Lisboa, Portugal
(e-mail: vv@di.fc.ul.pt)

1&C 2010

Propositions as Sessions

Philip Wadler

University of Edinburgh
wadler@inf.ed.ac.uk

ICFP 2012

Example: The petition
server

® The type governing the interaction with the
petition server, as seen from the side of the
client

® First,“interactively” set up the title and the
closing date for the reception of the
sighatures

Petition = ®{setTitle: !string.Petition,
setDate: !date.Petition,
submit: ...}

Submitting a proposal

® Once happy, the petiton writer commits
the titlet+date.

® |f the petition proposal is accepted by the
server, then the promotion phase begins

Petition = &{..,,
submit: &{accepted: Promotion,
denied: !string.end}}

The promotion phase

® During the promotion phase all one can do
is to sign the petition by sending a signature

Promotion = !Istring .Promotion

The linear and the
unrestricted phases

® The set up part is linear, we want no
interferences

Petition = lin®{setTitle: lin!string.Petition,

setDate: lin!date.Petition,
submit: lin&{accepted: Promotion,
denied: lin?string.end}}

® The promotion is unrestricted, we seek as
many signatories as possible

Promotion = un!string.Promotion

The well-known type of
the petition channel

® The channel as seen from the client’s side

PetitionServer = un?!Petition. PetitionServer

® Abbreviated to

+!Petition

Creating and
distributing the petition
channel

main :: unit — unit

main _ =
split new x!Petition as ps1, ps2 in
fork (petitionServer psi);

Code for the server

petitionServer :: ! Petition — unit
petitionServer ps =
split new Petition as p1, p2 in
ps!pi;
fork (setup p2 (1,1,1970) "Save me");
petitionServer ps

setup :: dual(Petition) — date —
string — unit
setut pdt =
p > {setDate: setup p (p?) t,
setTitle: setup p d (p?),
submit: p < accepted,

Functions and
Processes

* A monadic integration of functions and (session-typed)
processes:

{c:S <- d:T} :: Functional type for a proc. c:S, using d:T
{ c <- P <-d } :: Functional term for a proc c:S, using d:T

* A linear extension to a general functional PL
* Processes can communicate functional terms so...
* Higher-order, mobile (open) processes!

Streams as Processes

e Output an infinite sequence of integers, starting at n.
* A recursive session type:
stype intStream = lint.intStream

* Write a recursive session using a recursive function:

nats : int -> {c:intStream}
C <-natsn =
{ <-outputcn
c <- nats (n+1) }

Streams as Processes

e Output an infinite sequence of integers, starting at n.

* A recursive session type:
stype intStream = lint.intStream

* Write a recursive session using a recursive function:

filter : (int -> bool) -> { d:intStream <- c:intStream }
d <-filterq<-c=
{ x <-input c
case (q x) of
true => _ <- output d X
d <-filter q <- ¢
| false => d <- filter q <- c}

Higher-Order
Processes

* Monadic values can be communicated by processes.
* An App Store Session:
stype AppStore = Choice{
weather:
l{c:Weather <- d:API, e:GPS}.end
travel:
{c:Travel <- d:APl}.end
game:
{c:Game <- d:APl}.end}

Higher-Order
Processes

* The App Store code:
c <-StoreW Tr G =
{ case c of
weather => <- output c W
close ¢
travel => __<-outputc Tr
close c
game => __ <-outputc G
close c}

Higher-Order
Processes

* The App Store Client, running the Weather App:
c <-WeatherClient() <- a:AppStore, d:AP| =
{ <-a.weather
w <- input a
g <-ActivateGPS()
c<-w<-d,g}

